Appendix 4: Chemical Kinetics Problems (BLM)

1. State 3 examples of properties, directly related to reactants or products, that could be used to measure a reaction rate. (van Kessel 365)
2. What property would be appropriate to measure rate in each of the following reactions?
a. $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2}+\mathrm{ZnSO}_{4}$
(van Kessel 365)
3. What units are used to express reaction rate?
4. In the reaction $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$, how does the rate of disappearance of hydrogen compare to the rate of disappearance of nitrogen?
How does the rate of production of NH_{3} compare to the rate of disappearance of nitrogen?
5. For the reaction $2 A+B \rightarrow 3 C$, it was found that the rate of consumption of B was $0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$. What was the rate of consumption of A and the rate of formation of C ?
6. At a certain temperature, the rate of consumption of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $2.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$. How fast are NO_{2} and O_{2} being formed? $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
7. Write the rate expressions for the following reactions in terms of the disappearance of the reactants
and the appearance of the products:
a. $\mathrm{I}_{(\mathrm{aq})}+\mathrm{OCl}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{Ol}_{(\mathrm{aq})}^{-}$
b. $3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{O}_{3(\mathrm{~g})}$
c. $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
d. $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(Chang 538)
8. In a combustion reaction, 8.0 mol of methane gas reacts completely in a 2.00 L container containing excess oxygen gas in 3.2 s .

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a. Calculate the averate rate of consumption of methane gas in mol / L.s.
b. Calculate the averate rate of consumption of oxygen gas in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$.
c. Calculate the averate rate of production of carbon dioxide gas in mol / L.s.
d. Calculate the averate rate of production of water vapour in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$.
(van Kessel 366)
9. Hydrogen iodide and oxygen react to form iodine gas and water vapour. If oxygen gas reacts at a rate of $0.0042 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$,

$$
4 \mathrm{HI}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a. what is the rate of formation of iodine gas in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$?
b. what is the rate of formation of water vapour in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$?
c. what is the rate of consumption of hydrogen iodide gas in mol / L•s?
10. Consider the reaction, $4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})}$. Suppose that at a particular moment during the reaction, oxygen is reacting at the rate of $0.024 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$. Calculate the rate at which $\mathrm{N}_{2} \mathrm{O}_{5}$ is being formed and calculate the rate at which NO_{2} is being consumed. (Chang 538)

