(Chang 538)

## Appendix 4: Chemical Kinetics Problems (BLM)

- 1. State 3 examples of properties, directly related to reactants or products, that could be used to measure a reaction rate. (van Kessel 365)
- 2. What property would be appropriate to measure rate in each of the following reactions?

a. 
$$MnO_4^- + 5 Fe^{2+} + 8 H^+ \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$

b. 
$$Zn + H_2SO_4 \rightarrow H_2 + ZnSO_4$$
 (van Kessel 365)

- 3. What units are used to express reaction rate?
- 4. In the reaction 3 H₂ + N₂ → 2 NH₃, how does the rate of disappearance of hydrogen compare to the rate of disappearance of nitrogen? How does the rate of production of NH₃ compare to the rate of disappearance of nitrogen?
- 5. For the reaction 2 A + B  $\rightarrow$  3 C, it was found that the rate of consumption of B was 0.30 mol / L·s. What was the rate of consumption of A and the rate of formation of C?
- 6. At a certain temperature, the rate of consumption of  $N_2O_5$  is 2.5 x  $10^{-6}$  mol / L·s. How fast are  $NO_2$  and  $O_2$  being formed?  $2 N_2O_5 \rightarrow 4 NO_2 + O_2$
- 7. Write the rate expressions for the following reactions in terms of the disappearance of the reactants

and the appearance of the products:

a. 
$$I_{(aq)}^- + OCI_{(aq)}^- \rightarrow CI_{(aq)}^- + OI_{(aq)}^-$$

b. 
$$3 O_{2(g)} \rightarrow 2 O_{3(g)}$$

c. 
$$4 \text{ NH}_{3(g)}^{2(g)} + 5 \text{ O}_{2(g)}^{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2 \text{O}_{(g)}$$

d. 
$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$$

8. In a combustion reaction, 8.0 mol of methane gas reacts completely in a 2.00 L container containing excess oxygen gas in 3.2 s.

$$CH_{4(q)} + 2 O_{2(q)} \rightarrow CO_{2(q)} + 2 H_2O_{(q)}$$

- a. Calculate the averate rate of consumption of methane gas in mol / L·s.
- b. Calculate the averate rate of consumption of oxygen gas in mol / L·s.
- c. Calculate the averate rate of production of carbon dioxide gas in mol / L.s.
- d. Calculate the averate rate of production of water vapour in mol / L·s. (van Kessel 366)

9. Hydrogen iodide and oxygen react to form iodine gas and water vapour. If oxygen gas reacts at a rate of 0.0042 mol / L·s,

4 
$$HI_{(g)}$$
 +  $O_{2\,(g)}$   $\rightarrow$  2  $I_{2(g)}$  + 2  $H_2O_{(g)}$ 

- a. what is the rate of formation of iodine gas in mol / L·s?
- b. what is the rate of formation of water vapour in mol / L·s?
- c. what is the rate of consumption of hydrogen iodide gas in mol / L·s?
- 10. Consider the reaction,  $4 \text{ NO}_{2(g)} + O_{2(g)} \rightarrow 2 \text{ N}_2\text{O}_{5(g)}$ . Suppose that at a particular moment during the reaction, oxygen is reacting at the rate of 0.024 mol / L·s. Calculate the rate at which  $N_2\text{O}_5$  is being formed and calculate the rate at which  $NO_2$  is being consumed. (Chang 538)